The Health Effects Institute and its partners conceived and funded a program to characterize the emissions from heavy-duty diesel engines compliant with the 2007 and 2010 on-road emissions standards in the United States and to evaluate indicators of lung toxicity in rats and mice exposed repeatedly to 2007-compliant new-technology diesel exhaust (NTDE*). The a priori hypothesis of this Advanced Collaborative Emissions Study (ACES) was that 2007-compliant on-road diesel emissions "..
View Article and Find Full Text PDFSmall animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)-exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD.
View Article and Find Full Text PDFAn experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses.
View Article and Find Full Text PDFAn approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured.
View Article and Find Full Text PDFThe NERC Program conducted identically designed exposure-response studies of the respiratory and cardiovascular responses of rodents exposed by inhalation for up to 6 months to diesel and gasoline exhausts (DE, GE), wood smoke (WS) and simulated downwind coal emissions (CE). Concentrations of the four combustion-derived mixtures ranged from near upper bound plausible to common occupational and environmental hotspot levels. An "exposure effect" statistic was created to compare the strengths of exposure-response relationships and adjustments were made to minimize false positives among the large number of comparisons.
View Article and Find Full Text PDF