Detoxification genes are crucial to insect resistance against chemical pesticides, yet their expression may be altered by exposure to biopesticides such as spores and insecticidal proteins of (Bt). Increased enzymatic levels of selected detoxification genes, including glutathione S-transferase (GST), cytochrome P450 (CYP450), and carboxylesterase (CarE), were detected in chlorantraniliprole (CAP)-resistant strains of the diamondback moth (DBM, ) from China when compared to a reference susceptible strain. These CAP-resistant DBM strains displayed distinct expression patterns of GST 1, CYP6B7, and CarE-6 after treatment with CAP and a Bt pesticide (Bt-G033).
View Article and Find Full Text PDFBiopesticides based on RNA interference (RNAi) took a major step forward with the first registration of a sprayable RNAi product, which targets the world's most damaging potato pest. Proactive resistance management is needed to delay the evolution of resistance by pests and sustain the efficacy of RNAi biopesticides.
View Article and Find Full Text PDFThe fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance.
View Article and Find Full Text PDFBackground: Practical resistance of Helicoverpa zea to Cry proteins has become widespread in the US, making Vip3Aa the only effective Bacillus thuringiensis (Bt) protein for controlling this pest. Understanding the genetic basis of Vip3Aa resistance in H. zea is essential in sustaining the long-term efficacy of Vip3Aa.
View Article and Find Full Text PDF