Publications by authors named "J L Hoyt"

Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.

View Article and Find Full Text PDF

Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.

View Article and Find Full Text PDF

Background: Increasing resistance to sulfadoxine-pyrimethamine (SP) threatens the effectiveness of intermittent preventive treatment (IPTp) to prevent malaria in pregnancy. Dihydroartemisinin-piperaquine (DP) is the most promising candidate to emerge from clinical trials, but requires a multi-day regimen. Despite being a single-dose regimen, coverage of IPTp-SP remains low, fuelling concerns about adherence to multi-day drug options.

View Article and Find Full Text PDF

The synthesis and application of aryl-substituted pyridine(diimine) iron complexes (PDI)FeCH to the catalytic borylation of heteroarenes under thermal conditions is described. Improvements in catalyst design and performance were guided by precatalyst activation studies, where investigations into stoichiometric reactivities of iron borohydride (4- Bu- PDI)Fe(HBPin) and iron furyl (4- Bu- PDI)Fe(2-methylfuryl) complexes revealed facile C(sp)-H activation and a slower and potentially turnover-limiting C(sp)-B formation step. Formation of the flyover dimer, [(4- Bu- PDI)Fe] was identified as a catalyst deactivation pathway and formally iron(0) complexes were found to be inactive for borylation.

View Article and Find Full Text PDF