As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Polyethylene (PE) is the most commonly used plastic type in the world, contributing significantly to the plastic waste crisis. Microbial degradation of PE in natural environments is unlikely due to its inert saturated carbon-carbon backbones, which are difficult to break down by enzymes, challenging the development of a biocatalytic recycling method for PE waste. Here, we demonstrated the depolymerization of low-molecular-weight (LMW) PE using an enzyme cascade that included a catalase-peroxidase, an alcohol dehydrogenase, a Baeyer Villiger monooxygenase, and a lipase after the polymer was chemically pretreated with m-chloroperoxybenzoic acid (mCPBA) and ultrasonication.
View Article and Find Full Text PDFThe 2-bit Lindqvist-type polyoxometalate (POM) [VO((OCH)CCHN)] with a diamagnetic {VO} core and azide termini shows six fully oxidized V centers in solution as well as the solid state, according to V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S to S state.
View Article and Find Full Text PDFIn this work, bismuth tungstate BiWO is immobilized on polymer membranes to photocatalytically remove micropollutants from water as an alternative to titanium dioxide TiO. A synthesis method for BiWO preparation and its immobilization on a polymer membrane is developed. BiWO is characterized using X-ray diffraction and UV-vis reflectance spectroscopy, while the membrane undergoes analysis through scanning electron microscopy, X-ray photoelectron spectroscopy, and degradation experiments.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified.
View Article and Find Full Text PDF