The classic enzymatic function of acetylcholinesterase (AChE) is the hydrolysis of acetylcholine (ACh) in the neuronal synapse. However, AChE is also present in nonneuronal cells such as lymphocytes. Various studies have proposed the participation of AChE in the development of cancer.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that belong to the neuromuscular cholinergic system, their main function is to hydrolyze the neurotransmitter acetylcholine (ACh), through their hydrolysis these enzymes regulate the neuronal and neuromuscular cholinergic system. They have recently attracted considerable attention due to the discovery of new enzymatic and nonenzymatic functions. These discoveries have aroused the interest of numerous scientists, consolidating the relevance of this group of enzymes.
View Article and Find Full Text PDFOxidative stress and inflammation induced by abundant consumption of high-energy foods and caloric overload are implicated in the dysfunction of the blood‒brain barrier (BBB), cognitive impairment, and overactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These enzymes hydrolyse acetylcholine, affecting anti-inflammatory cholinergic signalling. Our aim was to evaluate whether nicotinamide (NAM) attenuates the impairment of the BBB and cognitive function, improving cholinergic signalling.
View Article and Find Full Text PDFAcetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly.
View Article and Find Full Text PDFLead (Pb) is a heavy metal that alters the oxidation-reduction balance, affecting reproductive health and transfer during pregnancy and lactation. However, the multigenerational impact of exposure to low concentrations of Pb on mammalian ovaries has not been assessed. This study evaluated general parameters, histology, redox state (RS), protein carbonylation (PC), lipid peroxidation (LP), and hormone concentrations in the ovaries of mice (CD1® ICR) of three successive generations with both unigenerational (E1) and multigenerational (E2) exposure to 0.
View Article and Find Full Text PDF