Background: Increasing urbanization in tropical Africa may create new niches for malaria vectors, potentially leading to higher disease transmission rates. Vector control efforts remain largely targeted at ecologically rural bio-complexities with multiple hosts. Understanding mosquito species composition, ecology, host diversity and biting behavior in urban areas is crucial for planning effective control.
View Article and Find Full Text PDFBackground: Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions.
Methods: Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya.
Knowledge of insect dispersal is relevant to the control of agricultural pests, vector-borne transmission of human and veterinary pathogens, and insect biodiversity. Previous studies in a malaria endemic area of the Sahel region in West Africa revealed high-altitude, long-distance migration of insects and various mosquito species. The objective of the current study was to assess whether similar behavior is exhibited by mosquitoes and other insects around the Lake Victoria basin region of Kenya in East Africa.
View Article and Find Full Text PDF