Publications by authors named "J L Gavilano"

Quantum materials that feature magnetic long-range order often reveal complex phase diagrams when localized electrons become mobile. In many materials magnetism is rapidly suppressed as electronic charges dissolve into the conduction band. In materials where magnetism persists, it is unclear how the magnetic properties are affected.

View Article and Find Full Text PDF

NdCeCoIn features a magnetic field-driven quantum phase transition that separates two antiferromagnetic phases with an identical magnetic structure inside the superconducting condensate. Using neutron diffraction we demonstrate that the population of the two magnetic domains in the two phases is affected differently by the rotation of the magnetic field in the tetragonal basal plane. In the low-field SDW-phase the domain population is only weakly affected while in the high-field Q-phase they undergo a sharp switch for fields around the a-axis.

View Article and Find Full Text PDF

Unconventional superconductivity in many materials is believed to be mediated by magnetic fluctuations. It is an open question how magnetic order can emerge from a superconducting condensate and how it competes with the magnetic spin resonance in unconventional superconductors. Here we study a model d-wave superconductor that develops spin-density wave order, and find that the spin resonance is unaffected by the onset of static magnetic order.

View Article and Find Full Text PDF

The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a field-induced quantum phase transition, in superconducting NdCeCoIn, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field μ* = 8 T.

View Article and Find Full Text PDF

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature T, while a helical or conical magnetic state prevails at lower temperatures.

View Article and Find Full Text PDF