Background: The recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans for adaptive differentiation, has emerged.
Methodology/principal Findings: The purpose of this study is to develop an efficient model-based approach to perform bayesian exploratory analyses for adaptive differentiation in very large SNP data sets.
Gene regulatory networks refer to the interactions that occur among genes and other cellular products. The topology of these networks can be inferred from measurements of changes in gene expression over time. However, because the measurement device (i.
View Article and Find Full Text PDFBackground: The recent settlement of cattle in West Africa after several waves of migration from remote centres of domestication has imposed dramatic changes in their environmental conditions, in particular through exposure to new pathogens. West African cattle populations thus represent an appealing model to unravel the genome response to adaptation to tropical conditions. The purpose of this study was to identify footprints of adaptive selection at the whole genome level in a newly collected data set comprising 36,320 SNPs genotyped in 9 West African cattle populations.
View Article and Find Full Text PDFGrowth curve data consist of repeated measurements of a continuous growth process over time in a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates.
View Article and Find Full Text PDFDairy cattle breeds have been subjected over the last fifty years to intense artificial selection towards improvement of milk production traits. In this study, we performed a whole genome scan for differentiation using 42,486 SNPs in the three major French dairy cattle breeds (Holstein, Normande and Montbéliarde) to identify the main physiological pathways and regions which were affected by this selection. After analyzing the population structure, we estimated F(ST) within and across the three breeds for each SNP under a pure drift model.
View Article and Find Full Text PDF