It has been postulated that cellular glutamate is released into the extracellular fluid when the energy supply of the brain is compromised (i.e., anoxia or oxygen/glucose deprivation), and there the amino acid triggers the so-called excitotoxic cascade, causing neuronal death.
View Article and Find Full Text PDFAlthough ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode.
View Article and Find Full Text PDFThe striking correlation between neuronal vulnerability and down-regulation of translation suggests that this cellular process plays a critical part in the cascade of pathogenetic events leading to ischaemic cell death. There is compelling evidence supporting the idea that inhibition of translation is exerted at the polypeptide chain initiation step, and the present study explores the possible mechanism/s implicated. Incomplete forebrain ischaemia (30 min) was induced in rats by using the four-vessel occlusion model.
View Article and Find Full Text PDFWe have investigated the effect of the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) on protein synthesis rate and initiation factor 2 (eIF2) phosphorylation in PC12 cells differentiated with nerve growth factor. FCCP treatment induced a very rapid 2-fold increase in intracellular Ca(2+) concentration that was accompanied by a strong protein synthesis rate inhibition (68%). The translation inhibition correlated with an increased phosphorylation of the alpha subunit of eIF2 (eIF2 alpha) (25% vs.
View Article and Find Full Text PDFAn in vitro model of ischemia was obtained by subjecting PC12 cells differentiated with nerve growth factor to a combination of glucose deprivation plus anoxia. Immediately after the ischemic period, the protein synthesis rate was significantly inhibited (80%) and western blots of cell extracts revealed a significant accumulation of phosphorylated eukaryotic initiation factor 2, alpha subunit, eIF2(alphaP) (42%). Upon recovery, eIF2(alphaP) levels returned to control values after 30 min, whereas protein synthesis was still partially inhibited (33%) and reached almost control values within 2 h.
View Article and Find Full Text PDF