In this study, we demonstrate that ferroptosis is a component of the cell death mechanism induced by auranofin in HT-1080 cells, in contrast to the gold(III) compounds [Au(phen)Cl]PF and [Au(bnpy)Cl]. Additionally, we identify a potential role of Prdx6 in modulating the sensitivity of A-375 cells to auranofin treatment, whereas the gold(III) compounds evaluated here exhibit Prdx6-independent cytotoxicity. Finally, using mass spectrometry, we show that auranofin binds selectively to the catalytic Cys47 residue of Prdx6 in vitro under acidic conditions.
View Article and Find Full Text PDFTherapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFβ stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis).
View Article and Find Full Text PDFSmall interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed.
View Article and Find Full Text PDFFerroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis.
View Article and Find Full Text PDF