Publications by authors named "J L Escobar-Ivirico"

Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration.

View Article and Find Full Text PDF

We report the synthesis and physicochemical analysis of mixed-substituent dipeptide-based polyphosphazene polymers, poly[(glycineethylglycinato) (phenylphenoxy) phosphazene] (PNGEG PhPh ) and poly[(ethylphenylalanato) (glycineethylglycinato) phosphazene] (PNEPA GEG ), using glycylglycine ethyl ester (GEG) as the primary substituent side group and cosubstituting with phenylphenol (PhPh) and phenylalanine ethyl ester (EPA), respectively. The suitability of the cosubstituted polyphosphazenes to regenerative engineering was evaluated. The physicochemical evaluation revealed that the molecular weights, glass transition temperatures, hydrophilicity, and mechanical properties could be modulated by varying the compositions of the side groups to obtain a variety of properties.

View Article and Find Full Text PDF

Tendon and ligament shows extremely limited endogenous regenerative capacity. Current treatments are based on the replacement and or augmentation of the injured tissue but the repaired tissue rarely achieve functionality equal to that of the preinjured tissue. To address this challenge, tissue engineering has emerged as a promising strategy.

View Article and Find Full Text PDF

Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use.

View Article and Find Full Text PDF

Unlabelled: The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation.

View Article and Find Full Text PDF