Haematologica
March 2018
In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit.
View Article and Find Full Text PDFBright single photon sources have recently been obtained by inserting solid-state emitters in microcavities. Accelerating the spontaneous emission via the Purcell effect allows both high brightness and increased operation frequency. However, achieving Purcell enhancement is technologically demanding because the emitter resonance must match the cavity resonance.
View Article and Find Full Text PDF