Publications by authors named "J L Cochon"

The boron nitride nanotubes (BNNTs) synthesis, using CO2-laser vaporization of a BN target under nitrogen gas, is investigated by UV-laser induced fluorescence (LIF) of the vapor phase and UV-Rayleigh scattering (RS) of the gas-suspended nanoparticles. The LIF signal from B atoms is mainly detected in the 1.5 mm-thick region above the BN target.

View Article and Find Full Text PDF

Continuous laser vaporization of a BN target under N2 atmosphere is up to now the unique route to single-walled boron nitride nanotubes (BN-SWNTs). Although grams of product can be obtained by this technique, the raw material contains in addition to the BN-SWNTs, different by-products made of boron and nitrogen. Since these materials are undesirable for the studying of the intrinsic properties of the nanotubes, we have undertaken a purification process using chemical and physical methods to separate the different components.

View Article and Find Full Text PDF

We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products.

View Article and Find Full Text PDF

We report on the synthesis of C-BN single-walled nanotubes made of BN nanodomains embedded into a graphene layer. The synthesis process consists of vaporizing, by a continuous CO2 laser, a target made of carbon and boron mixed with a Co/Ni catalyst under N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) and nanoelectron energy loss spectroscopy (nanoEELS) provide direct evidence that boron and nitrogen co-segregate with respect to carbon and form nanodomains within the hexagonal lattice of the graphene layer in a sequential manner.

View Article and Find Full Text PDF

Spatial investigations of nickel and cobalt atoms and of C2 and C3 radicals are performed by laser induced fluorescence (LIF) in a continuous CO2 laser-vaporization reactor during the synthesis of single-walled carbon nanotubes. The chemical composition of the gas vaporized from bimetallic Ni/Co catalysts-carbon targets is determined using a chemical kinetic model. In this model, the evolution of Ni and Co atoms is driven by kinetics of condensation/evaporation process of pure metal clusters.

View Article and Find Full Text PDF