Publications by authors named "J L Cmarik"

The United States Department of Defense Blast Injury Research Program Coordinating Office organized the 2015 International State-of-the-Science meeting to explore links between blast-related head injury and the development of chronic traumatic encephalopathy (CTE). Before the meeting, the planning committee examined articles published between 2005 and October 2015 and prepared this literature review, which summarized broadly CTE research and addressed questions about the pathophysiological basis of CTE and its relationship to blast- and nonblast-related head injury. It served to inform participants objectively and help focus meeting discussion on identifying knowledge gaps and priority research areas.

View Article and Find Full Text PDF

The nitric oxide (NO) prodrug JS-K, a promising anti-cancer agent, consists of a diazeniumdiolate group necessary for the release of NO as well as an arylating ring. In this study, we research the mechanism by which JS-K kills a murine erythroleukemia cell line and determine the roles of NO and arylation in the process. Our studies indicate that JS-K inhibits the PI 3-kinase/Akt and MAP kinase pathways.

View Article and Find Full Text PDF

The cell lines of the NCI-60 panel represent different cancer types and have been widely utilized for drug screening and molecular target identification. Screening these cell lines for envelope proteins or gene sequences related to xenotropic murine leukemia viruses (X-MLVs) revealed that one cell line, EKVX, was a candidate for production of an infectious gammaretrovirus. The presence of a retrovirus infectious to human cells was confirmed by the cell-free transmission of infection to the human prostate cancer cell line LNCaP.

View Article and Find Full Text PDF

HEMATOLOGICAL MALIGNANCIES IN HUMANS TYPICALLY INVOLVE TWO TYPES OF GENETIC CHANGES: those that promote hematopoietic cell proliferation and survival (often the result of activation of tyrosine kinases) and those that impair hematopoietic cell differentiation (often the result of changes in transcription factors). The multi-stage erythroleukemia induced in mice by Friend spleen focus-forming virus (SFFV) is an excellent animal model for studying the molecular basis for both of these changes. Significant progress has been made in understanding the molecular basis for the multi-stage erythroleukemia induced by Friend SFFV.

View Article and Find Full Text PDF

Lack of suitable mouse models for central nervous system (CNS)-associated leukemias has hindered mechanism-guided development of therapeutics. By transplanting retrovirus-transformed mouse erythroleukemia cells into syngeneic mice, we developed a new animal model of meningeal leukemia associated with rapid paralysis. Necropsy revealed massive proliferation of the leukemic cells in the bone marrow (BM) followed by pathological angiogenesis and invasion of the leukemic cells into the meninges of the CNS.

View Article and Find Full Text PDF