Publications by authors named "J L Cahoon"

Background: Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation.

View Article and Find Full Text PDF
Article Synopsis
  • RIG-I-like receptors (RLRs) in the cytoplasm detect viral RNA and kickstart the body's initial antiviral defenses, but their interaction with glucose transporters (GLUTs) in immunity has been unclear.
  • The study reveals that GLUT4, which responds to insulin, can inhibit RLR signaling without needing to uptake glucose, particularly when it is trapped in the Golgi until a viral infection occurs.
  • The findings suggest that GLUT4's relocation affects the immune response to viruses, with implications for conditions like inflammatory myopathies where GLUT4 expression is lower, leading to increased interferon activity.
View Article and Find Full Text PDF

Laboratories in chemistry, biochemistry, and materials science are at the leading edge of technology, discovering molecules and materials to unlock capabilities in energy, catalysis, biotechnology, sustainability, electronics, and more. Yet, most modern laboratories resemble factories from generations past, with a large reliance on humans manually performing synthesis and characterization tasks. Robotics and automation can enable scientific experiments to be conducted faster, more safely, more accurately, and with greater reproducibility, allowing scientists to tackle large societal problems in domains such as health and energy on a shorter timescale.

View Article and Find Full Text PDF

We report a series of isomeric, dicationic Re(bpy)(CO)I complexes with bpy (2,2'-bipyridine) modified by two phenyl-CH-(NMe) pendants with cations located at variable distances from the active site for electrocatalytic CO reduction in CHCN/2.8 M HO. The position of the cationic groups dramatically increases the rate of catalysis by ∼800-fold, from 1.

View Article and Find Full Text PDF

Carbon electrodes are ideal for electrochemistry with molecular catalysts, exhibiting facile charge transfer and good stability. Yet for solar-driven catalysis with semiconductor light absorbers, stable semiconductor/carbon interfaces can be difficult to achieve, and carbon's high optical extinction means it can only be used in ultrathin layers. Here, we demonstrate a plasma-enhanced chemical vapor deposition process that achieves well-controlled deposition of out-of-plane "fuzzy" graphene (FG) on thermally oxidized Si substrates.

View Article and Find Full Text PDF