Publications by authors named "J L Bienias"

The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment.

View Article and Find Full Text PDF

An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance.

View Article and Find Full Text PDF

The paper presents the issues of metal surface treatment in fibre metal laminates (FML) to obtain high adhesion at the metal-composite interface. Aluminium 2024-T3 and titanium Grade 2 were analysed. The metal surface modifications were carried out by mechanical (sandblasting, Scotch-Brite abrasion), chemical (P2 etching, phosphate-fluoride process), electrochemical (chromic and sulphuric acid anodizing), and plasma treatment, as well as the application of sol-gel coatings.

View Article and Find Full Text PDF

This paper focuses on the effects of transverse shear and root rotations in both symmetric and asymmetrical end-notched flexure (AENF) interlaminar fracture toughness tests. A theoretical model is developed, whereas the test specimen is subdivided into four regions joined by a rigid interface. The differential equations for the deflection and rotations of each region are solved within both the Euler-Bernoulli simple beam theory (SBT) and the more refined Timoshenko beam theory (TBT).

View Article and Find Full Text PDF

This article presents selected aspects of an interlaminar shear strength and failure analysis of hybrid fiber metal laminates (FMLs) consisting of alternating layers of a 2024-T3 aluminium alloy and carbon fiber reinforced polymer. Particular attention is paid to the properties of the hybrid FMLs with an additional interlayer of glass composite at the metal-composite interface. The influence of hygrothermal conditioning, the interlaminar shear strength (short beam shear test), and the failure mode were investigated and discussed.

View Article and Find Full Text PDF