Identifying factors that drive among-individual variation in mixed parasitic infections is fundamental to understanding the ecology and evolution of host–parasite interactions. However, a lack of non-invasive diagnostic tools to quantify mixed infections has restricted their investigation for host populations in the wild. This study applied DNA metabarcoding on parasite larvae cultured from faecal samples to characterize mixed strongyle infections of 320 feral horses on Sable Island, Nova Scotia, Canada, in 2014 to test for the influence of host (age, sex and reproductive/social status) and environmental (location, local density and social group membership) factors on variation.
View Article and Find Full Text PDFHorses are ubiquitously infected by a diversity of gastro-intestinal parasitic helminths. Of particular importance are nematodes of the family Strongylidae, which can significantly impact horse health and performance. However, knowledge about equine strongyles remains limited due to our inability to identify most species non-invasively using traditional morphological techniques.
View Article and Find Full Text PDFBackground: Cyathostomins infect virtually all horses, and concomitant infections with 10 or more species per horse is standard. Species-specific knowledge is limited, despite potential species bias in development of disease and anthelmintic resistance. This is the first meta-analysis to examine effects of geographical region and cyathostomin collection method on reported composition of cyathostomin communities.
View Article and Find Full Text PDFSable Island, Nova Scotia, Canada hosts one of few natural populations of feral horses () never exposed to anthelmintics. Coproculture revealed cyathostomes, and , with (unusually) dominating in adult horses and cyathostomes dominating in young horses (<3 years of age). We examined 35 horses found dead in the springs of 2017 and 2018, as well as fecal samples from live horses in spring (n = 45) and summer 2018 (n = 236) using McMaster fecal flotation and Baermann larval sedimentation on fresh samples, and modified Wisconsin flotation and sucrose gradient immunofluorescent assay for and on frozen samples.
View Article and Find Full Text PDFGiven the ever-increasing levels of anthelmintic resistance in livestock parasites globally, it is recommended to use parasite fecal egg counts to make treatment decisions and to evaluate treatment efficacy. The consensus in equine parasitology is to use a flotation medium with a specific gravity (SG) of ≥ 1.20 to float the main parasite egg types of interest in egg counting techniques.
View Article and Find Full Text PDF