Publications by authors named "J L Beckey"

The split photodiode and the lateral effect photodiode are two popular detectors for measuring beam displacement. For small displacements of a Gaussian beam, which is the case of interest here, they are often seen as equivalent and used interchangeably, giving a signal proportional to the displacement. We show theoretically and experimentally that in the limit of low technical noise, where the signal to noise ratio is dominated by the shot noise of the light, the lateral effect photodiode produces a better signal to noise ratio than the split photodiode, owing to its optimum spatial detector response.

View Article and Find Full Text PDF

Multipartite entanglement is an essential resource for quantum communication, quantum computing, quantum sensing, and quantum networks. The utility of a quantum state |ψ⟩ for these applications is often directly related to the degree or type of entanglement present in |ψ⟩. Therefore, efficiently quantifying and characterizing multipartite entanglement is of paramount importance.

View Article and Find Full Text PDF

Nonlinear interferometers that replace beam splitters in Mach-Zehnder interferometers with nonlinear amplifiers for quantum-enhanced phase measurements have drawn increasing interest in recent years, but practical quantum sensors based on nonlinear interferometry remain an outstanding challenge. Here, we demonstrate the first practical application of nonlinear interferometry by measuring the displacement of an atomic force microscope microcantilever with quantum noise reduction of up to 3 dB below the standard quantum limit, corresponding to a quantum-enhanced measurement of beam displacement of 1.7  fm/sqrt[Hz].

View Article and Find Full Text PDF

In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8).

View Article and Find Full Text PDF