Publications by authors named "J Kypr"

Nucleic acids bear the genetic information and participate in its expression and evolution during replication, repair, recombination, transcription, and translation. These phenomena are mostly based on recognition of nucleic acids by proteins. The major factor enabling the specific recognition is structure.

View Article and Find Full Text PDF

Circular dichroism (CD) is remarkably sensitive to the conformational states of nucleic acids; therefore, CD spectroscopy has been used to study most features of DNA and RNA structures. Quadruplexes are among the significant noncanonical nucleic acids architectures that have received special attentions recently. This article presents examples on the contribution of CD spectroscopy to our knowledge of quadruplex structures and their polymorphism.

View Article and Find Full Text PDF

This work is a continuation of our effort to determine the structure responsible for expansion of the (CGG)(n) motif that results in fragile X chromosome syndrome. In our previous report, we demonstrated that the structure adopted by an oligonucleotide with this repeat sequence is not a quadruplex as was suggested by others. Here we demonstrate that (CGG) runs adopt another anomalous arrangement-a left-handed Z-DNA structure.

View Article and Find Full Text PDF

Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive.

View Article and Find Full Text PDF

CD spectroscopy, gel electrophoresis and absorption-based thermal stability were used to analyze quadruplex formation of RNA and RNA/DNA hybrid analogs of the deoxyoligonucleotide G4T4G4, which forms a well-characterized basket-type quadruplex. All RNA-containing dodecamers, g4u4g4, G4u4G4 and g4T4g4 (RNA lower-case, DNA capital letters), formed parallel, namely tetramolecular quadruplexes in Na+-containing solutions. The u4 loop forced DNA tetrads into the same conformation as adopted by g4u4g4.

View Article and Find Full Text PDF