Clin Oral Investig
February 2024
Objective: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of a reliable ground truth.
Materials And Methods: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method.
Clin Oral Investig
December 2023
Objective: The aim of this work was to assemble a large annotated dataset of bitewing radiographs and to use convolutional neural networks to automate the detection of dental caries in bitewing radiographs with human-level performance.
Materials And Methods: A dataset of 3989 bitewing radiographs was created, and 7257 carious lesions were annotated using minimal bounding boxes. The dataset was then divided into 3 parts for the training (70%), validation (15%), and testing (15%) of multiple object detection convolutional neural networks (CNN).
Methods of ablation imprints in solid targets are widely used to characterize focused X-ray laser beams due to a remarkable dynamic range and resolving power. A detailed description of intense beam profiles is especially important in high-energy-density physics aiming at nonlinear phenomena. Complex interaction experiments require an enormous number of imprints to be created under all desired conditions making the analysis demanding and requiring a huge amount of human work.
View Article and Find Full Text PDFThis study aims to develop a fully automated imaging protocol independent system for pituitary adenoma segmentation from magnetic resonance imaging (MRI) scans that can work without user interaction and evaluate its accuracy and utility for clinical applications. We trained two independent artificial neural networks on MRI scans of 394 patients. The scans were acquired according to various imaging protocols over the course of 11 years on 1.
View Article and Find Full Text PDFPrimary aldosteronism (PA) is the most frequent cause of secondary hypertension. Early diagnoses of PA are essential to avoid the long-term negative effects of elevated aldosterone concentration on the cardiovascular and renal system. In this work, we study the texture of the carotid artery vessel wall from longitudinal ultrasound images in order to automatically distinguish between PA and essential hypertension (EH).
View Article and Find Full Text PDF