The hydrodynamics within the United States Pharmacopeia Apparatus 2 have been shown to be highly non-uniform with a potential to yield substantial variability in dissolution rate measurements. Through the use of readily available engineering tools, several geometric modifications to the device were evaluated in this study. Specifically, we examined the influence of impeller clearance, agitator type (radial and axial), and vessel geometry (PEAK vessel) on the fluid flow properties and their relation to measured dissolution rates.
View Article and Find Full Text PDFThe USP tablet dissolution test is an analytical tool used for the verification of drug release processes and formulation selection within the pharmaceutical industry. Given the strong impact of this test, it is surprising that operating conditions and testing devices have been selected empirically. In fact, the flow phenomena in the USP test have received little attention in the past.
View Article and Find Full Text PDFComputational analysis is used to examine the hydrodynamic environment within the USP Apparatus II at common operating conditions. Experimental validation of the computational model shows that the simulations of fluid motion match the dispersion of dye observed in experiments. The computations are then used to obtain data that cannot be easily measured with experiments, specifically the distribution of shear forces within the media and along the wall.
View Article and Find Full Text PDFNear infrared spectroscopy (NIRS) was utilized to determine the water content during the drying of a drug substance with Karl Fisher titration as the reference measurement. NIRS calibration models were built with Partial Least Squares (PLS) regression based on spectral region of 1822-1948 nm for samples with 1-40% (w/w) water from five batches. A standard error of prediction (SEP) of 1.
View Article and Find Full Text PDFDrug Dev Ind Pharm
February 2003
In this article, three well-established engineering tools are used to examine hydrodynamics in dissolution testing apparatuses. The application of these tools would provide detailed information about the flow, shear, and homogeneity in dissolution tests. Particle image velocimetry successfully measures two-dimensional cross-sections of the velocity field in an experimental device under both laminar and turbulent conditions.
View Article and Find Full Text PDF