Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.
View Article and Find Full Text PDFDate palm (Phoenix dactylifera L.) is an important crop in arid regions that is well-adapted to desert ecosystems. To understand the remarkable ability to grow and yield in water-limited environments, experiments with water-withholding for up to four weeks were conducted.
View Article and Find Full Text PDFIntroduction: This article addresses the impact of policy measures on the number of alcohol-related crashes and fatalities in European Union countries. In particular, it assesses (1) whether mild or severe penalty measures should be used to reduce the number of crashes and fatalities caused by alcohol; and (2) whether alcoholic beverages should be treated differently or proportionally to their alcohol content.
Methods: This study analyzed the number of alcohol-related crashes and fatalities in 24 European Union countries between 2002 and 2014.
Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown.
View Article and Find Full Text PDFGadolinium-based contrast agents (GBCAs) are found increasingly in different water bodies, making the investigation of their uptake and distribution behavior in plants a matter of high interest to assess their potential effects on the environment. Depending on the used complexing agent, they are classified into linear or macrocyclic GBCAs, with macrocyclic complexes being more stable. In this study, by using TbCl, Gd-DTPA-BMA, and Eu-DOTA as model compounds for ionic, linear, and macrocyclic lanthanide species, the elemental species-dependent uptake into leaves of Arabidopsis thaliana under identical biological conditions was studied.
View Article and Find Full Text PDF