Pancreatic cancer is a lethal disease with a propensity for invading and metastasizing into the surrounding tissues, including the liver and intestines. A number of factors are aberrantly overexpressed in this tumor type and actively promote cancer progression and metastasis. The present study demonstrates that paired box transcription factor 6 (PAX6) and C-X-C chemokine receptor 4 (CXCR4) are frequently co-expressed in primary pancreatic adenocarcinoma tumors and established cell lines.
View Article and Find Full Text PDFMetastatic melanoma is an aggressive and deadly disease. The chemokine receptor CXCR4 is active in melanoma metastasis, although the mechanism for the promotion and maintenance of CXCR4 expression in these cells is mostly unknown. Here, we find melanoma cells express two CXCR4 isoforms, the common version and a variant that is normally restricted to cells during development or to mature blood cells.
View Article and Find Full Text PDFMelanoma is a highly aggressive disease that is difficult to treat owing to rapid tumor growth, apoptotic resistance and high metastatic potential. The MET proto-oncogene (MET) tyrosine kinase receptor promotes many of these cellular processes, but while MET is often overexpressed in melanoma, the mechanism driving this overexpression is unknown. As the MET gene is rarely mutated or amplified in melanoma, MET overexpression may be driven to increased activation through promoter elements.
View Article and Find Full Text PDFGSK-3 is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this article, we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small-molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis, and altered cellular morphology.
View Article and Find Full Text PDF