Rev Sci Instrum
November 2024
Runaway electrons, accelerated in a tokamak discharge to high energies (tens of MeV), can cause serious damage to plasma facing components. Therefore, it is important to develop effective mitigation strategies to reduce the risk of tokamak damage. To study the effects of various mitigation strategies, a dedicated diagnostic, the calorimetry probe, was developed at the COMPASS tokamak.
View Article and Find Full Text PDFThis article describes a fast and automatic reconstruction of the edge plasma electron density from the radiation of energetic Li atoms of the diagnostic beam on the COMPASS tokamak. Radiation is detected by using a CCD camera and by using an avalanche photo-diode system with a temporal resolution of 20 ms and 2 s, respectively. Both systems are equipped with a 670.
View Article and Find Full Text PDFThe atomic beam probe diagnostic concept aims at measuring the edge magnetic field and through that edge current distribution in fusion plasmas by observing trajectories of an ion beam stemming from a diagnostic neutral beam. The diagnostic potentially has microsecond scale time resolution and can thus prove to be a powerful option to study fast changes in the edge plasma. A test detector has been installed on the COMPASS tokamak as an extension of the existing lithium beam diagnostic system.
View Article and Find Full Text PDFThe authors present their first experiences with laparoscopic cholecystectomy. They introduced this new operative method in Czechoslovakia. They operated upon 58 patients.
View Article and Find Full Text PDF