Publications by authors named "J Kokot"

Voltage-gated L-type Cav1.3 Ca channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms.

View Article and Find Full Text PDF

There is considerable controversy about what causes (in)effectiveness of physician performance pay in improving the quality of care. Using a behavioral experiment with German primary-care physicians, we study the incentive effect of performance pay on service provision and quality of care. To explore whether variations in quality are based on the incentive scheme and the interplay with physicians' real-world profit orientation and patient-regarding motivations, we link administrative data on practice characteristics and survey data on physicians' attitudes with experimental data.

View Article and Find Full Text PDF

Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model.

View Article and Find Full Text PDF

Background: Posttraumatic osteoarthritis (OA) is a common disorder associated with a high socioeconomic burden, particularly in young, physically active, and working patients. Tranexamic acid (TXA) is commonly used in orthopaedic trauma surgery as an antifibrinolytic agent to control excessive bleeding. Previous studies have reported that TXA modulates inflammation and bone cell function, both of which are dysregulated during posttraumatic OA disease progression.

View Article and Find Full Text PDF

We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide.

View Article and Find Full Text PDF