Polymeric materials are widely used in medical engineering, and with the dynamic development of additive manufacturing (AM) technology, increasing attention is being paid to research on the mechanical strength of composite polymer structures. At the same time, the impact of sterilization on, for example, surgical templates and the influence of the sterilization process on the geometry of these parts have not been sufficiently studied. In this work, the effect of steam sterilization on samples made of polymer materials for medical applications was presented.
View Article and Find Full Text PDFThis study investigates the microstructural effects of process parameters on Ti6Al4V alloy produced via powder bed fusion (PBF) using laser beam melting (LB/M) technology. The research focuses on how variations in laser power, exposure velocity, and hatching distance influence the final material's porosity, microhardness, and microstructure. To better understand the relationships between process parameters, energy density, and porosity, a simple mathematical model was developed.
View Article and Find Full Text PDFOptoelectronic components are crucial across various industries. They benefit greatly from advancements in 3D printing techniques that enable the fabrication of intricate parts. Among these techniques, Material Extrusion (MEX) stands out for its simplicity and cost-effectiveness.
View Article and Find Full Text PDFThis paper shows the three-point bending strength analysis of a composite material consisting of polyamide doped with chopped carbon fiber and reinforced with continuous carbon fiber produced by means of the material extrusion (MEX) additive manufacturing technique. For a comparison, two types of specimens were produced: unreinforced and continuous fiber-reinforced (CFR) with the use of carbon fiber. The specimens were fabricated in two orientations that assure the highest strength properties.
View Article and Find Full Text PDFThe material extrusion (MEX) method utilizing highly filled metal filament presents an alternative to advanced additive metal manufacturing technologies. This process enables the production of metal objects through deposition and sintering, which is particularly attractive compared to powder bed fusion (PBF) technologies employing lasers or high-power electron beams. PBF requires costly maintenance, skilled operators, and controlled process conditions, whereas MEX does not impose such requirements.
View Article and Find Full Text PDF