Publications by authors named "J Klenzing"

 ×  plasma drifts and plasma number density were measured on two NASA rockets launched simultaneously at sunset from Kwajalein Atoll with apogees of 182 and 331 km, with similar, coincident measurements gathered on the Communications/Navigation Outage Forecasting System (C/NOFS) satellite at 390 km. The combined measurements portray a highly dynamic ionosphere in a narrow range of local time and altitude, providing evidence of vortex-like motions. Although the vertical plasma drift was upwards, its magnitude was not constant, increasing between ∼150 and 250 km altitude where the plasma density was reduced.

View Article and Find Full Text PDF

We report for the first time the day-to-day variation of the longitudinal structure in height of the F layer (hF) in the equatorial ionosphere using multi-satellite observations of electron density profiles by the Constellation Observing System for Meteorology, Ionosphere and Climate-2 (COSMIC-2). These observations reveal a ~3-day modulation of the hF wavenumber-4 structure viewed in a fixed local time frame during January 30-February 14, 2021. Simultaneously, ~3-day planetary wave activity is discerned from zonal wind observations at ~100 km by the Ionospheric Connection Explorer (ICON) Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI).

View Article and Find Full Text PDF

We investigate the forces and atmosphere-ionosphere coupling that create atmospheric dynamo currents using two rockets launched nearly simultaneously on 4 July 2013 from Wallops Island (USA), during daytime Sq conditions with ΔH of -30 nT. One rocket released a vapor trail observed from an airplane which showed peak velocities of >160 m/s near 108 km and turbulence coincident with strong unstable shear. Electric and magnetic fields and plasma density were measured on a second rocket.

View Article and Find Full Text PDF

A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition.

View Article and Find Full Text PDF

The bulk motion of the neutral gas at altitudes between about 200 and 600 km is an important factor in predicting the onset of plasma instabilities that are known to distort and/or disrupt high frequency radio communications. These neutral winds have historically been quite difficult to measure, especially from a moving spacecraft. A new space science instrument called the ram wind sensor has been developed to measure the component of the neutral gas velocity that lies along the orbit track of a satellite in low Earth orbit.

View Article and Find Full Text PDF