Metal additive manufacturing (AM) enables customizable, on-demand parts, allowing for new designs and improved engineering performance. Yet, the ability to control AM metal alloy microstructures (i.e.
View Article and Find Full Text PDFThis work presents a detailed instructional demonstration using the Rietveld refinement software MAUD for evaluating the crystallographic texture of single- and dual-phase materials, as applied to High-Pressure-Preferred-Orientation (HIPPO) neutron diffraction data obtained at Los Alamos National Laboratory (LANL) and electron backscatter diffraction (EBSD) pole figures on Ti-6Al-4V produced by additive manufacturing. This work addresses a number of hidden challenges intrinsic to Rietveld refinement and operation of the software to improve users' experiences when using MAUD. A systematic evaluation of each step in the MAUD refinement process is described, focusing on devising a consistent refinement process for any version of MAUD and any material system, while also calling out required updates to previously developed processes.
View Article and Find Full Text PDFA new approach for non-isothermal tempering analysis utilizing dilatometry is proposed and was carried out on a medium carbon steel with high silicon and additions of Mo and V for secondary hardening. The method includes a second non-isothermal step performed with the same heating rate (2 °C/min) used for the first step in order to create a baseline for analysis. The results were correlated with several other characterization techniques.
View Article and Find Full Text PDF