Publications by authors named "J Kirn"

Adult male zebra finches (Taeniopygia guttata) continually incorporate adult-born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity-dependent immediate early genes (e.g.

View Article and Find Full Text PDF

The avian brain is a valuable model for exploring adult neurogenesis. Here we use immunohistochemical methods to detect cell division and the incorporation of new neurons in the adult zebra finch brain. The nonradioactive, relatively inexpensive thymidine analog bromodeoxyuridine (BrdU) is used to label replicating DNA in dividing cells.

View Article and Find Full Text PDF

Adult neurogenesis is thought to provide neural plasticity used in forming and storing new memories. Here we show a novel relationship between numbers of new neurons and the stability of a previously learned motor pattern. In the adult zebra finch, new projection neurons are added to the nucleus HVC and become part of the motor pathway for producing learned song.

View Article and Find Full Text PDF

In many songbirds, vocal learning-related cellular plasticity was thought to end following a developmental critical period. However, mounting evidence in one such species, the zebra finch, suggests that forms of plasticity common during song learning continue well into adulthood, including a reliance on auditory feedback for song maintenance. This reliance wanes with increasing age, in tandem with age-related increases in fine motor control.

View Article and Find Full Text PDF