Rhizobial lipopolysaccharide (LPS) is required to establish an effective symbiosis with its host plant. An exo5 mutant of Rhizobium leguminosarum RBL5523, strain RBL5808, is defective in UDP-glucose (Glc) dehydrogenase that converts UDP-Glc to UDP-glucuronic acid (GlcA). This mutant is unable to synthesize either UDP-GlcA or UDP-galacturonic acid (GalA) and is unable to synthesize extracellular and capsular polysaccharides, lacks GalA in its LPS and is defective in symbiosis (Laus MC, Logman TJ, van Brussel AAN, Carlson RW, Azadi P, Gao MY, Kijne JW.
View Article and Find Full Text PDFJasmonates are plant signaling molecules that play key roles in defense against certain pathogens and insects, among others, by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the APETALA2-domain transcription factor ORCA3 is involved in the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate.
View Article and Find Full Text PDFPlant developmental processes are controlled by co-ordinated action of phytohormones and plant genes encoding components of developmental response pathways. ENOD40 was identified as a candidate for such a plant factor with a regulatory role during nodulation. Although its mode of action is poorly understood, several lines of evidence suggest interaction with phytohormone response pathways.
View Article and Find Full Text PDFRhizobium bacteria produce different surface polysaccharides which are either secreted in the growth medium or contribute to a capsule surrounding the cell. Here, we describe isolation and partial characterization of a novel high molecular weight surface polysaccharide from a strain of Rhizobium leguminosarum that nodulates Pisum sativum (pea) and Vicia sativa (vetch) roots. Carbohydrate analysis showed that the polysaccharide consists for 95% of mannose and glucose, with minor amounts of galactose and rhamnose.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2005
Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected.
View Article and Find Full Text PDF