Publications by authors named "J Kijima"

The outbreak of the COVID-19 pandemic has had an unprecedented impact on humanity as well as research activities in life sciences and medicine. Between January and August 2020, the number of coronavirus-related scientific articles was roughly 50 times more than that of articles published in the entire year of 2019 in PubMed. It is necessary to better understand the dynamics of research on COVID-19, an emerging topic, and suggest ways to understand and improve the quality of research.

View Article and Find Full Text PDF

Adsorption of protein molecules into the pores of a porous material is an important process for chromatographic separation of proteins and synthesis of nanoscale biocatalyst systems; however, there are barriers to developing a method for analyzing the process quantitatively. The purpose of this study is to examine the applicability of differential scanning calorimetry (DSC) for quantitative analysis of protein adsorption into silica mesopores. For this purpose myoglobin, a globular protein (diameter: 35.

View Article and Find Full Text PDF

We studied the stabilities of short (4- and 3-bp) DNA duplexes within silica mesopores modified with a positively charged trimethyl aminopropyl (TMAP) monolayer (BJH pore diameter 1.6-7.4 nm).

View Article and Find Full Text PDF

The community structures of two mesophilic acetate-degrading methanogenic consortia enriched at dilution rates of 0.025 and 0.6 d(-1) were analyzed by fluorescence in situ hybridization (FISH) and phylogenetic analyses based on 16S rDNA clonal sequences and quantitative real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

The requirement of Ni2+ and Co2+ addition on methanogenic activity and the coenzymes involved in methanogenesis were investigated in anaerobic continuous cultivation with synthetic wastewater using acetate as the sole carbon source. Addition of Ni2+ and Co2+ to the synthetic wastewater drastically increased the maximum dilution rate of the cultivation. The concentrations of coenzymes F430 and corrinoids in the biomass increased to 0.

View Article and Find Full Text PDF