Publications by authors named "J Kibsgaard"

Magnetron sputtering is a versatile method for investigating model system catalysts thanks to its simplicity, reproducibility, and chemical-free synthesis process. It has recently emerged as a promising technique for synthesizing δ-NiGa thin films. Physically deposited thin films have significant potential to clarify certain aspects of catalysts by eliminating parameters such as particle size dependence, metal-support interactions, and the presence of surface ligands.

View Article and Find Full Text PDF

Previous studies have identified δ-NiGa as a promising catalyst for the hydrogenation of CO to methanol at atmospheric pressure. Given its recent discovery, the current understanding of this catalyst is very limited. Additionally, the presence of multiple thermodynamically stable crystal phases in the Ni/Ga system complicates the experiments and their interpretation.

View Article and Find Full Text PDF

While model studies with small nanoparticles offer a bridge between applied experiments and theoretical calculations, the intricacies of working with well-defined nanoparticles in electrochemistry pose challenges for experimental researchers. This perspective dives into nanoparticle electrochemistry, provides experimental insights to uncover their intrinsic catalytic activity and draws conclusions about the effects of altering their size, composition, or loading. Our goal is to help uncover unexpected contamination sources and establish a robust experimental methodology, which eliminates external parameters that can overshadow the intrinsic activity of the nanoparticles.

View Article and Find Full Text PDF

The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing).

View Article and Find Full Text PDF

Over the past two decades, there has been growing interest in developing catalysts to enable Haber-Bosch ammonia synthesis under milder conditions than currently pertain. Rational catalyst design requires theoretical guidance and clear mechanistic understanding. Recently, a spin-mediated promotion mechanism was proposed to activate traditionally unreactive magnetic materials such as cobalt (Co) for ammonia synthesis by introducing hetero metal atoms bound to the active site of the catalyst surface.

View Article and Find Full Text PDF