The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply.
View Article and Find Full Text PDFNon-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking.
View Article and Find Full Text PDFThe current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production.
View Article and Find Full Text PDFA non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration.
View Article and Find Full Text PDFWater suspensions of cysts of a pathogenic clinical isolate of sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts.
View Article and Find Full Text PDF