Background: Attached gingival phenotype has a crucial impact on the implant's durability and its future success.
Purpose: This study aims to measure and compare buccal peri-implant gingival thickness following grafting with connective tissue graft (CTG) and the concentrated growth factor (CGF) graft.
Study Design, Setting, Sample: This is a split-mouth designed randomized controlled clinical study in which a total of 20 aged 18 to 55 have bilateral missing teeth in the maxillary premolar region with less than 2 mm of healthy peri-implant gingival thickness.
Objectives: This study aimed to evaluate the effect of multiple baking cycles of porcelain on its shear bond strength to a cobalt-chromium (Co-Cr) alloy that is three-dimensionally printed using Selective Laser Melting (SLM) technique.
Materials And Methods: The research sample comprised forty-eight discs measuring 5 mm × 3 mm, divided into four groups according to: the manufacturing method (SLM, casting) and the number of porcelain baking cycles (1, 3) as follows: Group A: Co-Cr alloy by SLM with one baking cycle; Group B: Co-Cr alloy by SLM with three baking cycles; Group C: Ni-Cr alloy by casting with one baking cycle; Group D: Ni-Cr alloy by casting with three baking cycles. Then, porcelain was melted on disks, shear testing was performed and the values of the Shear Bond Strength (SBS) in MegaPascals (MPa) were calculated.
Polycomb group proteins (PcG) mediate epigenetic silencing of important developmental genes and other targets. In Drosophila, canonical PcG-target genes contain Polycomb Response Elements (PREs) that recruit PcG protein complexes including PRC2 that trimethylates H3K27 forming large H3K27me3 domains. In the OFF transcriptional state, PREs loop with each other and this looping strengthens silencing.
View Article and Find Full Text PDFengrailed (en) encodes a homeodomain transcription factor crucial for the proper development of Drosophila embryos and adults. Like many developmental transcription factors, en expression is regulated by many enhancers, some of overlapping function, that drive expression in spatially and temporally restricted patterns. The en embryonic enhancers are located in discrete DNA fragments that can function correctly in small reporter transgenes.
View Article and Find Full Text PDF