Publications by authors named "J Kaslik"

The growing concentration of CO in the atmosphere is a serious problem, and efforts to counter this issue are thus highly important. One of the possible approaches to solving this problem is the conversion of waste CO into products with added economic value. Methanol is one of these products with vast potential usage.

View Article and Find Full Text PDF

Nickel oxide (NiO) is one of the most popular hydrogenation catalysts. In heterogeneous catalysis, nickel oxide is used, for example, as a suitable methanation catalyst in the Fischer-Tropsch reaction not only for CO hydrogenation but also in the modified Fischer-Tropsch reaction with CO. However, CH selectivity and CO conversion strongly depend on NiO micro- (MPs) and nanoparticles' (NPs) shape, size, and surface area.

View Article and Find Full Text PDF
Article Synopsis
  • Glass waveguides are crucial for advanced photonic circuits and applications like quantum computing, imaging, and sensing, but their traditional manufacturing methods can be complex and costly.
  • This study introduces a new, simpler method for creating glass waveguides using low-temperature processes where silver iodide phosphate glass microwires are integrated into silver phosphate glass matrices, enhancing light propagation.
  • The innovative design allows for the incorporation of multiple microwires, enabling the transmission of different colors of light in various directions, making them suitable for advanced photonic applications, including smart glass technologies.
View Article and Find Full Text PDF

Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FeN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion.

View Article and Find Full Text PDF

Abiotic and biotic remediation of chlorinated ethenes (CEs) in groundwater from a real contaminated site was studied using biochar-based composites containing nanoscale zero-valent iron (nZVI/BC) and natural resident microbes/specific CE degraders supported by a whey addition. The material represented by the biochar matrix decorated by isolated iron nanoparticles or their aggregates, along with the added whey, was capable of a stepwise dechlorination of CEs. The tested materials (nZVI/BC and BC) were able to decrease the original TCE concentration by 99% in 30 days.

View Article and Find Full Text PDF