We present a sequence building block (SBB) that embeds magnetic resonance spectroscopy (MRS) into another sequence on the Siemens VE platform without any custom hardware. This enables dynamic studies such as functional MRS (fMRS), dynamic shimming and frequency correction, and acquisition of navigator images for motion correction. The SBB supports nonlocalised spectroscopy (free induction decay), STimulated Echo Acquisition Mode single voxel spectroscopy, and 1D, 2D and 3D phase-encoded chemical shift imaging.
View Article and Find Full Text PDFSelecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate.
View Article and Find Full Text PDFImplementing a standardized phosphorus-31 magnetic resonance spectroscopy ( P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic P-MRS protocol.
View Article and Find Full Text PDFIn this second part of a two-part paper, we intend to demonstrate the impact of the previously proposed advanced quality control pipeline. To understand its benefit and challenge the proposed methodology in a real scenario, we chose to compare the outcome when applying it to the analysis of two patient populations with significant but highly different types of fatigue: COVID-19 and multiple sclerosis (MS). P-MRS was performed on a 3 T clinical MRI, in 19 COVID-19 patients, 38 MS patients, and 40 matched healthy controls.
View Article and Find Full Text PDFThe selection of appropriate areas for reforestation remains a complex task because of influence by several factors, which requires the use of new techniques. Based on the accurate outcomes obtained through machine learning in prior investigations, the current study evaluates the capacities of six machine learning techniques (MLT) for delineating optimal areas for reforestation purposes specifically targeting Quercus ilex, an important local species to protect soil and water in upper Ziz, southeast Morocco. In the initial phase, the remaining stands of Q.
View Article and Find Full Text PDF