We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.
View Article and Find Full Text PDFThe first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ∼20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations.
View Article and Find Full Text PDFThe extreme physics of targets shocked by NIF's 192-beam laser is observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A diagnostic control system (DCS) framework for both hardware and software facilitates development and eases integration.
View Article and Find Full Text PDF