Placental insufficiency causes intrauterine growth restriction (IUGR), a common complication of pregnancy. In skeletal muscle, IUGR reduces fetal myofibril size, reduces myoblast proliferation and reduces expression of genes in cell cycle regulation clusters. The myocardium is striated like skeletal muscle, and IUGR also reduces cell cycle activity and maturation in cardiomyocytes, despite cardiac output preferentially directed to the coronary circulation.
View Article and Find Full Text PDFInsulin is an important fetal growth factor. However, chronic experimental hyperinsulinemia in the fetus fails to accelerate linear and lean mass growth beyond normal rates. Mechanisms preventing accelerated lean mass accretion during hyperinsulinemia are unknown.
View Article and Find Full Text PDFHepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2013
Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis.
View Article and Find Full Text PDFBackground: Nanoparticles (NPs) produced by nanotechnology processes have taken the field of medicine by storm. Concerns about safety of these NPs in humans, however, have recently been raised. Although studies of NP toxicity have focused on lung disease the mechanistic link between NP exposure and lung injury remained unclear.
View Article and Find Full Text PDF