Background: Prior studies have established that macroaggregated albumin (MAA)-SPECT/CT offers more robust lung shunt fraction (LSF) and lung mean absorbed dose (LMD) estimates in Y radioembolization in comparison to planar imaging. However, incomplete SPECT/CT coverage of the lungs is common due to clinical workflows, complicating its potential use for LSF and LMD calculations. In this work, lung truncation in MAA-SPECT/CT was addressed via correction strategies to improve Y treatment planning.
View Article and Find Full Text PDFBackground: Radioembolization with yttrium-90 (Y-90) is utilized to treat primary liver malignancies. The efficacy of this intra-arterial therapy in arterially hypoperfused tumors is not known.
Methods: We reviewed data of patients with primary liver tumors treated with Y-90 prescription doses of at least 150 Gy.
Functional liver parenchyma can be damaged from treatment of liver malignancies with Y selective internal radiation therapy (SIRT). Evaluating functional parenchymal changes and developing an absorbed dose (AD)-toxicity model can assist the clinical management of patients receiving SIRT. We aimed to determine whether there is a correlation between Y PET AD voxel maps and spatial changes in the nontumoral liver (NTL) function derived from dynamic gadoxetic acid-enhanced MRI before and after SIRT.
View Article and Find Full Text PDFBackground: With recent interest in patient-specific dosimetry for radiopharmaceutical therapy (RPT) and selective internal radiation therapy (SIRT), an increasing number of voxel-based algorithms are being evaluated. Monte Carlo (MC) radiation transport, generally considered to be the most accurate among different methods for voxel-level absorbed dose estimation, can be computationally inefficient for routine clinical use.
Purpose: This work demonstrates a recently implemented grid-based linear Boltzmann transport equation (LBTE) solver for fast and accurate voxel-based dosimetry in RPT and SIRT and benchmarks it against MC.
.Y selective internal radiation therapy (SIRT) treatment of hepatocellular carcinoma (HCC) can potentially underdose lesions, as identified on post-therapy PET/CT imaging. This study introduces a methodology and explores the feasibility for selectively treating SIRT-underdosed HCC lesions, or lesion subvolumes, with stereotactic body radiation therapy (SBRT) following post-SIRT dosimetry.
View Article and Find Full Text PDF