Background: In-hospital mortality risk prediction is an important tool for benchmarking quality and patient prognostication. Given changes in patient characteristics and treatments over time, a contemporary risk model for patients with acute myocardial infarction (MI) is needed.
Methods: Data from 313 825 acute MI hospitalizations between January 2019 and December 2020 for adults aged ≥18 years at 784 sites in the National Cardiovascular Data Registry Chest Pain-MI Registry were used to develop a risk-standardized model to predict in-hospital mortality.
Small cohorts of certain disease states are common especially in medical imaging. Despite the growing culture of data sharing, information safety often precludes open sharing of these datasets for creating generalizable machine learning models. To overcome this barrier and maintain proper health information protection, foundational models are rapidly evolving to provide deep learning solutions that have been pretrained on the native feature spaces of the data.
View Article and Find Full Text PDFInfectious disease is the result of interactions between host and pathogen and can depend on genetic variations in both. We conduct a genome-to-genome study of paired human and Mycobacterium tuberculosis genomes from a cohort of 1556 tuberculosis patients in Lima, Peru. We identify an association between a human intronic variant (rs3130660, OR = 10.
View Article and Find Full Text PDFThe rapid growth in consumer-facing mobile and sensor technologies has created tremendous opportunities for patient-driven personalized health management. The diagnosis and management of cardiac arrhythmias are particularly well suited to benefit from these easily accessible consumer health technologies. In particular, smartphone-based and wrist-worn wearable electrocardiogram (ECG) and photoplethysmography (PPG) technology can facilitate relatively inexpensive, long-term rhythm monitoring.
View Article and Find Full Text PDF