Nanomaterials (Basel)
July 2024
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange-red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group.
View Article and Find Full Text PDFPoly(2-hydroxyethylmethacrylate-co-2-(dimethylamino)ethyl methacrylate), P(HEMA-co-DMAEMAx), copolymers were quaternized through the reaction of a part of (dimethylamino)ethyl moieties of DMAEMA units with 1-bromohexadecane. Antimicrobial coatings were further prepared through the cross-linking reaction between the remaining DMAEMA units of these copolymers and the epoxide ring of poly(,-dimethylacrylamide-co-glycidyl methacrylate), P(DMAm-co-GMAx), copolymers. The combination of P(HEMA-co-DMAEMAx)/P(DMAm-co-GMAx) copolymers not only enabled control over quaternization and cross-linking for coating stabilization but also allowed the optimization of the processing routes towards a more facile cost-effective methodology and the use of environmentally friendly solvents like ethanol.
View Article and Find Full Text PDFThe encapsulation of active components is currently used as common methodology for the insertion of additional functions like self-healing properties on a polymeric matrix. Among the different approaches, polyurea microcapsules are used in different applications. The design of polyurea microcapsules (MCs) containing active diisocyanate compounds, namely isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HDI), is explored in the present work.
View Article and Find Full Text PDFExtensive research has been dedicated to the solution-processable white organic light-emitting diodes (WOLEDs), which can potentially influence future solid-state lighting and full-color flat-panel displays. The proposed strategy based on WOLEDs involves blending two or more emitting polymers or copolymerizing two or more emitting chromophores with different doping concentrations to produce white light emission from a single layer. Toward this direction, the development of blends was conducted using commercial blue poly(9,9-di-n-octylfluorenyl2,7-diyl) (PFO), green poly(9,9-dioctylfluorenealt-benzothiadiazole) (F8BT), and red spiro-copolymer (SPR) light-emitting materials, whereas the synthesized copolymers were based on different chromophores, namely distyryllanthracene, distyrylcarbazole, and distyrylbenzothiadiazole, as yellow, blue, and orange-red emitters, respectively.
View Article and Find Full Text PDF