Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain.
View Article and Find Full Text PDFNPJ 2D Mater Appl
February 2023
We present a tunable phononic crystal which can be switched from a mechanically insulating to a mechanically conductive (transmissive) state. Specifically, in our simulations for a phononic lattice under biaxial tension ( = = 0.01 N m), we find a bandgap for out-of-plane phonons in the range of 48.
View Article and Find Full Text PDFMechanical strain is a powerful tuning knob for excitons, Coulomb-bound electron-hole complexes dominating optical properties of two-dimensional semiconductors. While the strain response of bright free excitons is broadly understood, the behaviour of dark free excitons (long-lived excitations that generally do not couple to light due to spin and momentum conservation) or localized excitons related to defects remains mostly unexplored. Here, we study the strain behaviour of these fragile many-body states on pristine suspended WSe kept at cryogenic temperatures.
View Article and Find Full Text PDFThe application of an electric field through two-dimensional materials (2DMs) modifies their properties. For example, a bandgap opens in semimetallic bilayer graphene while the bandgap shrinks in few-layer 2D semiconductors. The maximum electric field strength achievable in conventional devices is limited to ≤0.
View Article and Find Full Text PDFWe introduce a nanomechanical platform for fast and sensitive measurements of the spectrally resolved optical dielectric function of 2D materials. At the heart of our approach is a suspended 2D material integrated into a high silicon nitride nanomechanical resonator illuminated by a wavelength-tunable laser source. From the heating-related frequency shift of the resonator as well as its optical reflection measured as a function of photon energy, we obtain the real and imaginary parts of the dielectric function.
View Article and Find Full Text PDF