Publications by authors named "J K Brunso-Bechtold"

Purpose: To assess the long-term effects of fractionated whole brain irradiation (fWBI) using diffusion tensor imaging (DTI) and behavior in a pediatric rodent model for the clinical presentation of adult pediatric cancer survivors.

Materials And Methods: Five-week-old, male F344xBN rats were randomized to receive 0, 5, or 6.5 Gy fractions biweekly for 3 weeks, resulting in Sham, Irradiated-30 (IR-30) and IR-39 Gy total dose groups.

View Article and Find Full Text PDF

In rats, as in humans, normal aging is characterized by a decline in hippocampal-dependent learning and memory, as well as in glutamatergic function. Both growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels have been reported to decrease with age, and treatment with either GH or IGF-I can ameliorate age-related cognitive decline. Interestingly, acute GH and IGF-I treatments enhance glutamatergic synaptic transmission in the rat hippocampus of juvenile animals.

View Article and Find Full Text PDF

Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research.

View Article and Find Full Text PDF

Alterations in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) have been documented in aged animals and may contribute to changes in hippocampal-dependent memory. Growth hormone (GH) regulates AMPA-R and NMDA-R-dependent excitatory transmission and decreases with age. Chronic GH treatment mitigates age-related cognitive decline.

View Article and Find Full Text PDF

Fractionated partial or whole-brain irradiation (fWBI) is a widely used, effective treatment for primary and metastatic brain tumors, but it also produces radiation-induced brain injury, including cognitive impairment. Radiation-induced neural changes are particularly problematic for elderly brain tumor survivors who also experience age-dependent cognitive impairment. Accordingly, we investigated i] radiation-induced cognitive impairment, and ii] potential biomarkers of radiation-induced brain injury in a rat model of aging.

View Article and Find Full Text PDF