Publications by authors named "J Jorcano"

While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation.

View Article and Find Full Text PDF

In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issue necessitates the development of innovative strategies to combat bacterial infections and promote wound healing. Electrospinning technology has gained significant attention as a versatile method for fabricating advanced wound dressings with enhanced functionalities. This work is based on the generation of polyvinylpyrrolidone (PVP)-based dressings through electrospinning, using a DomoBIO4A bioprinter, and incorporating graphene oxide (GO)/zinc oxide (ZnO) nanocomposites as a potent antibacterial agent.

View Article and Find Full Text PDF

Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs).

View Article and Find Full Text PDF

Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells.

View Article and Find Full Text PDF

Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets.

View Article and Find Full Text PDF