Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.
View Article and Find Full Text PDFThere has been limited research devoted to secondary electron emission (SEE) from nano-materials using rapid and heavy ion bombardment. Here we report a comparison of SEE properties between novel nano-materials with a three-dimensional nano-structure composed of a mostly regular pattern of rods and gold used as a standard material for SEE under bombardment of heavy ions at energies of a few MeV/nucleon. The nano-structured materials show enhanced SEE properties when compared with gold.
View Article and Find Full Text PDFFrom detailed spectroscopy of ^{110}Cd and ^{112}Cd following the β^{+}/electron-capture decay of ^{110,112}In and the β^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested.
View Article and Find Full Text PDFThe properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data.
View Article and Find Full Text PDFA measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn.
View Article and Find Full Text PDF