Background: Regions of genome-wide marker data may have differing influences on the evaluated traits. This can be reflected in the genomic models by assigning different weights to the markers, which can enhance the accuracy of genomic prediction. However, the standard multi-trait single-step genomic evaluation model can be computationally infeasible when the traits are allowed to have different marker weights.
View Article and Find Full Text PDFSmall breeding programs are limited in achieving competitive genetic gain and prone to high rates of inbreeding. Thus, they often import genetic material to increase genetic gain and to limit the loss of genetic variability. However, the benefit of import depends on the strength of genotype-by-environment interaction.
View Article and Find Full Text PDFThis paper evaluates the potential of maximizing genetic gain in dairy cattle breeding by optimizing investment into phenotyping and genotyping. Conventional breeding focuses on phenotyping selection candidates or their close relatives to maximize selection accuracy for breeders and quality assurance for producers. Genomic selection decoupled phenotyping and selection and through this increased genetic gain per year compared to the conventional selection.
View Article and Find Full Text PDFBackground: We describe the latest improvements to the long-range phasing (LRP) and haplotype library imputation (HLI) algorithms for successful phasing of both datasets with one million individuals and datasets genotyped using different sets of single nucleotide polymorphisms (SNPs). Previous publicly available implementations of the LRP algorithm implemented in AlphaPhase could not phase large datasets due to the computational cost of defining surrogate parents by exhaustive all-against-all searches. Furthermore, the AlphaPhase implementations of LRP and HLI were not designed to deal with large amounts of missing data that are inherent when using multiple SNP arrays.
View Article and Find Full Text PDFBackground: Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision.
View Article and Find Full Text PDF