A novel analysis of the dynamical behavior of nanoalloy systems, as represented by model Ni/Al 13-atom clusters, over a broad range of energies that cover the stage-wise transition of the systems from their solid-like to liquid-like state is presented. Conceptually, the analysis is rooted in partitioning the systems into judiciously chosen subsystems and characterizing the latter in terms of subsystem-specific dynamical descriptors that include dynamical degrees of freedom, root-mean-square bond-length fluctuation, and element-specific subsystem temperature. The analysis reveals a host of intriguing new peculiarities in the dynamical behavior of the Ni/Al 13-mers, among which are what we call the chameleon effect and the difference in the temperatures of the Ni and Al subsystems at high energies, a difference that strongly depends on the cluster composition and also changes with energy.
View Article and Find Full Text PDFThe added technological potential of bimetallic clusters and nanoparticles, as compared to their pure (i.e., one-component) counterparts, stems from the ability to further fine-tune their properties and, consequently, functionalities through a simultaneous use of the "knobs" of size and composition.
View Article and Find Full Text PDFResults of size-selected electron photo-detachment experiments and density functional theory calculations on anionic AlPt, = 1-7, clusters are presented and analyzed. The measured and calculated spectra of electron binding energies are, overall, in excellent accord with each other. The analysis reveals the general importance of accounting for the multiplicity of structural forms of a given-size cluster that can contribute to its measured spectrum, especially when the clusters are fluxional and/or the conditions of the experiment allow for structural transitions.
View Article and Find Full Text PDFIn vitro experimental systems based on continuous piscine cell lines can be used as an alternative to animal tests for obtaining qualitative and quantitative information on the possible fate and effect of chemicals in fish. However, their capability to reproduce complex metabolic processes and toxic responses as they occur in vivo is limited due to the lack of organ-specific tissue architecture and functions. Here we introduce a three-dimensional (3D) in vitro experimental system based on spheroidal aggregate cultures (spheroids) of the continuous rainbow trout liver cell line RTL-W1 and provide a first description of their structural and functional properties including growth, viability/longevity, metabolic activity, ultrastructure and cytochrome P450 1A (CYP1A) expression determined by bright-field, multi-photon fluorescence and transmission electron microscopy as well as RT-qPCR analysis.
View Article and Find Full Text PDFThe properties and characteristics of materials on the subnano/nano scale are very different from those of their bulk counterparts. The evolution of materials properties with size is the holy grail of nanoscience. An intriguing question then is: Can one predict what type of material (metal, semiconductor or insulator) an unidentified element will be, when in bulk quantities, solely from the properties it exhibits over a limited range of the subnano/nano size-regime? We demonstrate here that for nominally metallic elements (i.
View Article and Find Full Text PDF