Publications by authors named "J Jayender"

Catheter-based cardiac ablation is a minimally invasive procedure for treating atrial fibrillation (AF). Electrophysiologists perform the procedure under image guidance during which the contact force between the heart tissue and the catheter tip determines the quality of lesions created. This paper describes a novel multi-modal contact force estimator based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

View Article and Find Full Text PDF

This work tackles practical issues which arise when using a tendon-driven robotic manipulator (TDRM) with a long, flexible, passive proximal section in medical applications. Tendon-driven devices are preferred in medicine for their improved outcomes via minimally invasive procedures, but TDRMs come with unique challenges such as sterilization and reuse, simultaneous control of tendons, hysteresis in the tendon-sheath mechanism, and unmodeled effects of the proximal section shape. A separable TDRM which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable.

View Article and Find Full Text PDF

Objective: To assess the rate of iatrogenic injury to the inner ear in vestibular schwannoma resections.

Study Design: Retrospective case review.

Setting: Multiple academic tertiary care hospitals.

View Article and Find Full Text PDF

Purpose: Drilling injuries of the inner ear are an underreported complication of lateral skull base (LSB) surgery. Inner ear breaches can cause hearing loss, vestibular dysfunction, and third window phenomenon. This study aims to elucidate primary factors causing iatrogenic inner ear dehiscences (IED) in 9 patients who presented to a tertiary care center with postoperative symptoms of IED following LSB surgery for vestibular schwannoma, endolymphatic sac tumor, Meniere's disease, paraganglioma jugulare, and vagal schwannoma.

View Article and Find Full Text PDF

We propose a novel stereo laparoscopy video-based non-rigid SLAM method called EMDQ-SLAM, which can incrementally reconstruct thee-dimensional (3D) models of soft tissue surfaces in real-time and preserve high-resolution color textures. EMDQ-SLAM uses the expectation maximization and dual quaternion (EMDQ) algorithm combined with SURF features to track the camera motion and estimate tissue deformation between video frames. To overcome the problem of accumulative errors over time, we have integrated a g2o-based graph optimization method that combines the EMDQ mismatch removal and as-rigid-as-possible (ARAP) smoothing methods.

View Article and Find Full Text PDF