In this study, Caulerpa racemosa oil was used to produce biodiesel by recombinant Pichia pastoris displaying bound (rPp-BL) and secretory lipase (rPp-SL). Collected algae was pre-treated using ultrasonication, microwave and solvent extraction. Defatted C.
View Article and Find Full Text PDFIn the present work, Aspergillus niger was employed to produce commercially valuable malic acid from crude glycerol derived from waste cooking oil. Crude glycerol dosage, yeast extract dosage and initial pH were the influencing factors playing a significant role in the malic acid synthesis. The optimal condition for malic acid biosynthesis was studied by using response surface methodology.
View Article and Find Full Text PDFCrude glycerol, one of the ever-growing by-product of biodiesel industry and is receiving the closest review in recent times because direct disposal of crude glycerol may emerge ecological issues. The renewability, bioavailability and typical structure of glycerol, therefore, discover conceivable application in serving the role of carbon and energy source for microbial biosynthesis of high value products. This conceivable arrangement could find exploitation of crude glycerol as a renewable building block for bio-refineries as it is economically as well as environmentally profitable.
View Article and Find Full Text PDFIn the present study, Kluyveromyces marxianus was utilized to study the batch fermentation kinetics of biomass production, substrate utilization and bioethanol production from woody stem Prosopis juliflora. The pre-treated substrate was subjected to Simultaneous Saccharification and Fermentation (SSF) under optimised conditions of pH (4.9), temperature (41 °C), substrate concentration 5% (w/v), inoculum concentration 3% (v/v) and the maximum concentration of bioethanol was found to be 21.
View Article and Find Full Text PDFThis study investigated the biohydrogen production from brewery effluents using free and immobilized co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes obtained from random mutagenesis with ultra violet (UV) and ethidium bromide (EtBr) treatment. The best mutant for biohydrogen production was screened based on the sugar utilization efficiency. Maximum hydrogen production of 87% was achieved with immobilized EtBr mutated co-culture.
View Article and Find Full Text PDF