Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly , has garnered significant attention. , a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis.
View Article and Find Full Text PDFPurpose: In oligoprogressive (OP) cancer, there are a limited number of metastatic areas progressing on a background of stable or responding to widespread cancer. Although the standard of care for OP is changing systemic therapy (ST), stereotactic body radiation therapy (SBRT) is being explored as an alternative local therapy targeting the sites of progression.
Methods And Materials: RADIANT (NCT04122469) was a single-center phase 2 study of patients with metastatic genitourinary (GU), breast, and gastrointestinal (GI) cancers, receiving ST for ≥3 months, with radiographic OP disease in ≤5 sites.
We present the coupled oscillator: A new mechanism for signal amplification with widespread application in metrology. We introduce the mechanical theory of this framework and support it by way of simulations. We present a particular implementation of coupled oscillators: A microelectromechanical system (MEMS) that uses one large (∼100mm) N52 magnet coupled magnetically to a small (∼0.
View Article and Find Full Text PDFAdiponectin, a hormone secreted by adipose tissue, plays a complex role in regulating metabolic homeostasis and has also garnered attention for its potential involvement in the pathogenesis of late-onset Alzheimer's disease (LOAD). The objective of this study was to investigate the association of variants with plasma adiponectin levels and LOAD risk in subjects from the Slovak Caucasian population. For this purpose, 385 LOAD patients and 533 controls without cognitive impairment were recruited and genotyped for a total of eighteen single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFUnderstanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time.
View Article and Find Full Text PDF